
QUAL2K Model Progress Update Jordan River TMDL April 20, 2009

Nicholas von Stackelberg Stantec Consultants nicholas.vonstackelberg@stantec.com

- Model approximates complex physical, chemical and biological processes through simplified representations
 - DO interactions
- Decision support tool for TMDL
 - Improve understanding of DO linkages
 - Support determination of the permissible load to the Jordan River
 - Support waste load allocation for selected flow scenario(s) (critical condition)

Modeling Steps

- 1. Model selection QUAL2K
- Model calibration build confidence in model by most closely matching simulated to observed conditions
- 3. Calibration insufficient?

Additional data collection and recalibration

4. Calibration sufficient?

Decision support tool for TMDL

QUAL2K Capabilities

- Specifically developed to simulate DO conditions in river systems
- Capable of simulating the four DO processes
 - Physical: channel hydraulics, temperature and reaeration
 - Organic decomposition: BOD
 - SOD: proscribed or DiToro diagenesis model
 - Algal growth: diurnal time scale, nutrient cycle, free floating and benthic algae
- Other water quality kinetics: suspended solids, conductivity (TDS), pathogens

QUAL2K Fundamentals

- **Receiving water model** only simulates stream flow and kinetics, not entire watershed.
- **One dimensional** channel is well-mixed vertically and laterally.
- **Steady state** non-uniform, steady flow is simulated.
- **Diurnal time scale** heat budget and temperature are simulated as a function of meteorology. All water quality variables are simulated on a diurnal time scale.
- Flow and concentration inputs Point and non-point loads and abstractions are simulated.
- Water quality kinetics temperature, pH, conductivity, sediment, organics, nutrients, dissolved oxygen, pathogens, algae.

Initial Model Calibration

- Calibrated model to July 2004 conditions
- Validated model to January 2004 conditions
- Calibration constituents
 - Flow and travel time
 - Temperature
 - Conductivity
 - CBOD, DO, TP
 - TSS
 - E coli
 - Alkalinity and pH
- Calibration performance
 - Excellent for hydraulics (HEC-RAS)
 - Good for most water quality constituents

Initial Model Calibration

- Lack of observed data available on the following input/output water quality constituents
 - Nitrogen speciation (nitrate, ammonia, dissolved organic)
 - Phosphorus speciation (inorganic, dissolved organic)
 - Particulate organic matter (POM)
 - Free floating plants (phytoplankton)
 - Fixed plants (periphyton/benthic algae)
 - Sediment oxygen demand (SOD)
- Unable to calibrate plant growth kinetics and SOD

Additional Data Collection

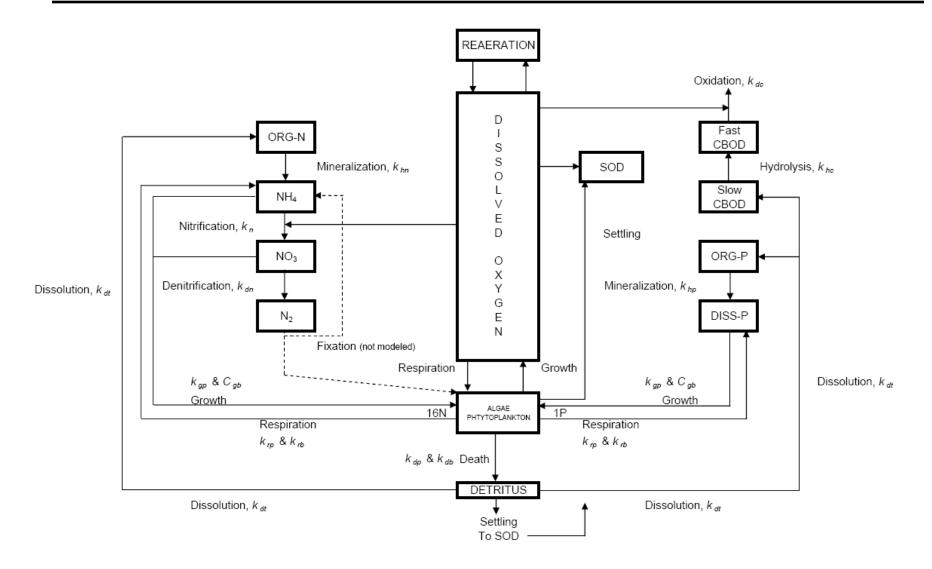
- Seasonal synoptic sampling events
 - Data collected on Jordan and primary inflows
 - Aug 2006, Oct 2006, and Feb 2007
 - 3 day sampling period travel time of Jordan
- SOD research study
- Periphyton sampling
- Reaeration measurement
- Shading analysis
- Sensitivity analysis on model parameters (completed 2008)

Next Steps

- Complete data collection (summer 2009)
- Recalibrate model (fall 2009)
 - Use data from seasonal synoptic sampling events
 - Adjust model parameters and evaluate the response in each season
 - Model parameters will be selected that result in best-fit between simulated and observed results for all seasons
- Use as decision support tool

Contact

Project Manager


Karen Nichols Stantec Consultants (801) 261-0090 karen.nichols@stantec.com

Lead Modeler

Nicholas von Stackelberg Stantec Consultants (801) 261-0090 nicholas.vonstackelberg@stantec.com

Dissolved Oxygen

Reaeration

Effect of Water Velocity (8 formulas)

17	Reaeration model	USGS(pool-riffle)
18	Temp correction	Internal O'Connor-Dobbins Churchill Owens-Gibbs Tsivoglou-Neal Thackston-Dawson USGS(pool-riffle) USGS(channel-control)
19	Reaeration wind effect	
20	O2 for carbon oxidation	
21	O2 for NH4 nitrification	
22	Oxygen inhib model CBOD oxidation	

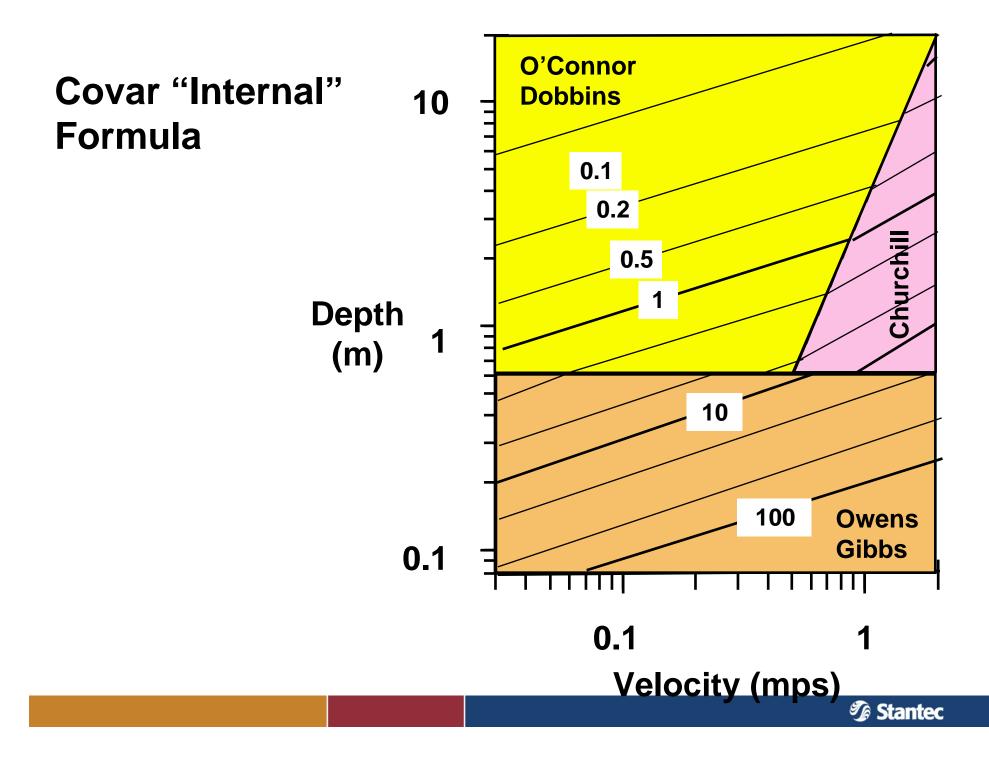
Effect of Wind (2 formulas)

19 Reaeration wind effect	None, 🔻
20 O2 for carbon oxidation	None Banks-Herrera
21 O2 for NH4 nitrification	Wanninkhof

Reaeration Formulas

O'Connor-Dobbins: most rivers

$$k_a = 3.93 \frac{U^{0.5}}{H^{1.5}}$$


Owens-Gibbs: shallow streams

$$k_a = 5.32 \ \frac{U^{\ 0.67}}{H^{\ 1.85}}$$

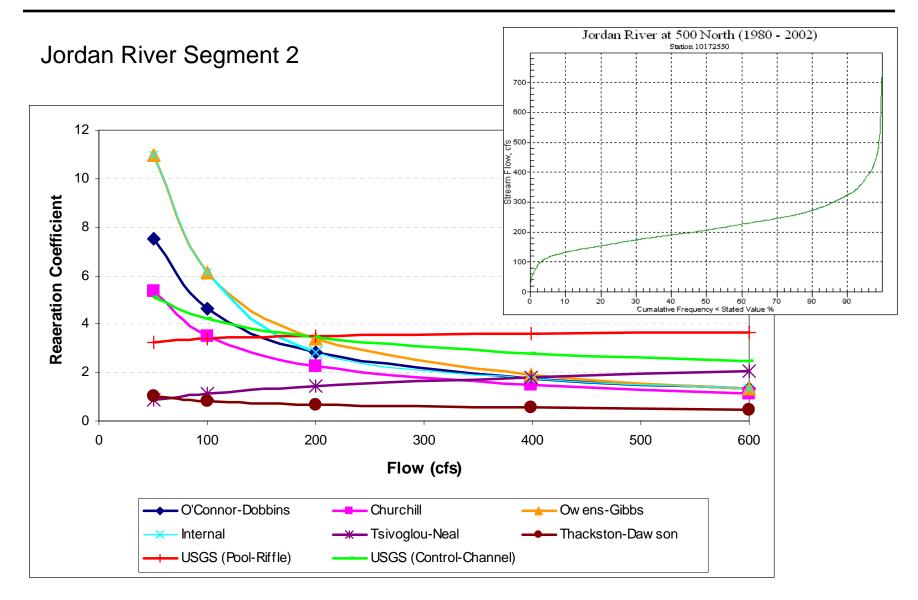
Churchill: deeper, high velocity rivers

$$k_a = 5.03 \frac{U}{H^{1.67}}$$

Reaeration Formulas

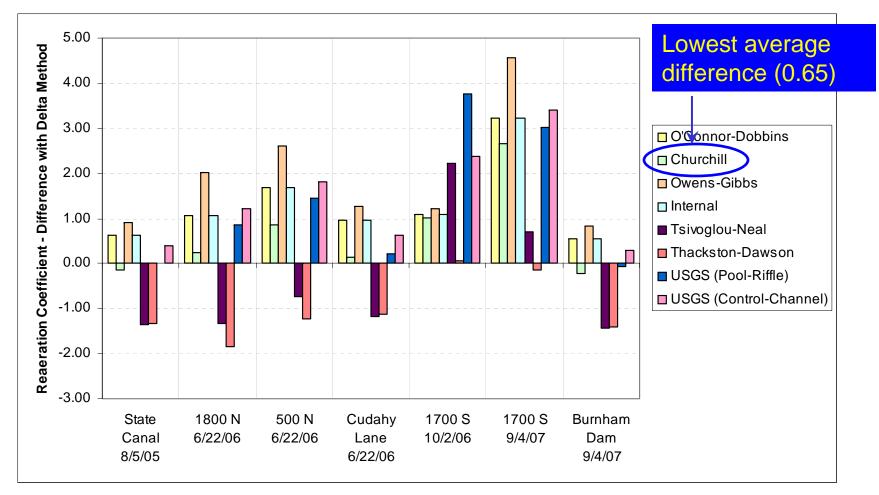
Tsivoglou-Neal
$$k_a = 15,308US$$

Thackston-Dawson
 $k_a = 2.16 * (1+9F^{0.25}) U_*/H$


USGS: pool-riffle
 $k_a = 596(US)^{0.528}Q^{-0.136}$

USGS: channel-control

$$k_a = 142(US)^{0.333}H^{-0.66}B_t^{-0.243}$$


Reaeration Model Sensitivity

🌮 Stantec

Reaeration Verification

Difference between reaeration coefficients estimated using the formulas in QUAL2K and the Approximate Delta Method (McBride and Chapra, 2005)

Stantec